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We investigate the degree of approximation of bivariate functions on a rectangle
by various (discrete) spline-blended operators. Our aim is to give a fuller descrip­
tion than is available in the literature by using mixed moduli of smoothness of
higher orders. The crucial tool from the univariate case is a generalization of a
theorem of Sharma and Meir on the degree of simultaneous approximation by
cubic spline interpolators. The main results for the multivariate case are two
theorems expressing certain permanence principles. which explain how the Boolean
sums and certain (discrete) blending operators inherit quantitative properties from
their univariate building blocks. Various historical remarks and numerous referen­
ces are included in order to draw the reader's attention to the somewhat diverse
history of the subject. " 1990 Academic Press. Inc

1. INTRODUCT10I"

The present paper supplements our recent research (see [12,14, 15J) on
the degree of approximation in C(l x f), the space of real-valued functions
which are continuous on the rectangle [x f, where [: = [a, hJ and
f := [c, dJ are non-trivial compact intervals of the real axis IR. The
approximating functions used were trigonometric and algebraic blending
functions (pseudopolynomials). Functions of this type were introduced in
two papers of Marchaud [31, 32J and are (for the algebraic case) defined
by the scheme

[Xf3(X,y)1--> I x'·A,(y)+ I B;(X)·yIEIR.
i~O I~II
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SIMULTANEOUS APPROXIMAnON 171

Here A I and Hi are bounded, real-valued functions on f and f, respectively,
and n, m? 0 are integers.

Thus the use of the so-called blending approach to construct approxi­
mating bivariate functions is a classical one. In addition to the work by
Marchaud, other early papers on the subject were written by Neder [36, 37],
Mangeron [30J, Popoviciu [39,40], and by Nicolescu [38]. These histori­
cal facts seem to have been overlooked for several years, although Gordon's
highly original paper [19 J is a most valuable source of historical references,
mentioning also Stancu's [46J and Coons' [10J important work on the
subject. The relevance of this background was emphasized in Birkhoffs
paper [5J on algebraic aspects of multivariate interpolation.

While Gordon [16-22 J carried out most of his work on the Boolean
sum method in the late 60's, there were three schools, two Russian and one
Romanian, which independently and almost simultaneously worked on
related problems. Unfortunately, they used a somewhat different and some­
times misleading terminology, so that their results remained largely
unknown in the Western hemisphere until recently (see, e.g., [7, 41, I J).
More detailed information in regard to the history of the subject and a
brief survey of some of the results of the Russian and Romanian schools
can be found in [12].

The bases {XO, Xl, ... , x") of 0,,(1) and {yO, .1'1, ... , .1'111) of Om( f) used in
the above representation of a pseudopolynomial may be replaced by bases
of other finite-dimensional subspaces of C(I) and C( f). If we choose
instead bases of certain spaces of splines defined on f and f, respectively,
we are led to spline-blended operators (such as, for instance, spline-blended
surface interpolators), also known as Gordon operators. A more exact
definition will be given below. The term "spline-blended operator," or
similar expressions, are mainly used in papers dealing with the approxima­
tion-theoretical aspects of the subject; the terminology "Gordon operator"
or "Gordon surface" can be found in various articles written from the
viewpoint of Computer-aided Geometric Design (see, e.g., [6, 2 J ).

The aim of this note is to carry out an investigation on the degree of
approximation by Gordon operators and some of their generalizations and
modifications which is analogous to our previous work on approximation
by algebraic pseudopolynomials, and thus to give a fuller description of
their approximation behavior than is available in the literature. Both
pseudopolynomials and spline blended ihterpolants are the result of apply­
ing a certain blending scheme to a bivariate function f given on the square
f x 1. Another way of saying this is that they arise from some Boolean sum
of operators applied to certain functions f in a function space F. To be
more specific, let us recall that if P and Q are linear operators defined on
a function space F (consisting of functions over a domain D) and mapping
F into itself. then the Boolean sum of P and Q is given by
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(PEB Q)U; x):= (P+ Q - PQ)U; X)

= PU- Qf; X) + QU; X), IE F, XED.

For D = 1 x f and IE C(1 x f), we define the partial/unctions I, and I' by

F(y):= I'(x):= I(x, y), for all (x, y) E 1 x 1.

If L is an operator given on some space G of functions in the variable
x E 1, then the parametric extension,L of L to all bivariate functions
f: 1x f --+ IR such that I' E G for all y E f is given by

,LU; x, y) : = LU'; x), (x, y)E Ix f.

Likewise, if M is an operator defined for certain functions in the variable
y E f, the parametric extension ,M of M is defined by

,MU; X,.I'):= MU,:.I')·

It thus makes sense to consider the Boolean sum

,L EB ,M: F --+ (,L EB I M)(F)

on the set F of all bivariate functions for which this operator is well­
defined.

Before describing further what we will denote as a Gordon operator, we
make some notational remarks. For k, IE No, the symbol DIU) denotes the
partial differential operator ak+ IIDxkD,v l

; occasionally we will write pUI

instead of D U lit: We define

e· '1(1 x f) : = {f: 1 x f --+ IR ID IU1
/ is continuous for °~ k ~ p, °~ I ~ q:.

The corresponding symbols used for the univariate case will be ('1'(1), Dlkl,

(dldx)\ and pkl, respectively. For p=q=O, we write C(l) and C(1x})
instead of C°(1l and Co'0(l x f). Similarly, D IO

) and Dill II) mean the identity
operators on the appropriate spaces.

For Gordon operators, the setting is now as follows. Let

,1,,=,1.,.,,: a=xo<x\ < ... <x,,=h

be a collection of knots, i.e., a mesh, partitioning the interval 1 of the real
line R We define

():= max Ax,
O~ i II I

{3 := ()I mill Ax,
o I II I

("mesh gauge"),

("mesh ratio").
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then

{p I p is polynomial of degree 2m - I in each interval (Xi' X, + I)}'

constitutes a space of cubic splines.
Given any function f possessing a first derivative at X o and X/I' the

so-called Type I cubic .Ipline interpolant of f ("clamped spline") is by
definition the unique element ,liE S'(I, il/l) satisfying

Ij(X i ) =f(x;),

sj(x i ) =f'(xJ,

The spline 5j can be written as

0:( i:( n,

i= 0, n.

where cP i' - I :( i :( n + I, are the cardinal splines of Type I interpolation.
Clearly, the mapping

Sel,,: C1(I) 3fl---> .ljE S'(l, il/l) C Cl (l)

is linear. Using a further partition il'/l = /1 r '" of J = [c, d] yields a second
linear spline operator

Instead of the operator Sel
n

' frequently the so-called natural spline
operators Tel,,: C(I) ---+ S3(I, il/l) have been considered. They yield splines
satisfying the interpolation conditions

TdnU; xJ =f(xi ),

(1'1,,/)" (xJ = 0,

°:( i:( n,

i = 0, n.

The two free parameters in a cubic spline interpolant can also be
assigned in other ways (periodic splines, Type II cubic spline interpolants,
etc. )

In this paper, we will denote as a (special) Gordon operator the Boolean
sum
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From the above representation of S~Jf x) = .lj(X), it follows that

,SLl,,(f; x, v)

o . 0
=-;;-(xll,y)·tP I(X)+ L f(xI'Y)·tP,(x)+-::;,-(x.,y)·tP., I(X),

ex , II ex

Hence, ,S.I,J is an element of the space

S'(1, A,,)® el(l),

and likewise, ,S jill maps into

(We note here that, given the (real) linear spaces V, W of univariate
functions, the tensor product V ® W of bivariate functions is the linear hull
of all product-type functionsj(x) .g(y) withfE V and gE w.)

Furthermore, the product operator

maps into SV, All) ® e2(J) n C2(1) ® S'(J, AIll)' so that

,SJ" ttl,SJ",: C II (1 x J) -+ S'(1, An! ® C I (J) + C I (1) ® S'(J, Alii)'

Analogously,

J.!" ttl,T,,,,: C(1 x J) -+ S'(I, All) ® C(J) + C(I) ® S'(J, Alii)'

Assertions for the degree of approximation of smooth functions by
,SLl"ttl,SI", and bY,TLl"ttl,T j ", were made by several authors; we mention
papers by Gordon [19] and by Carlson and Hall [8], where estimates for
f E C4. 4(1 X J) were given. Also, Mettke [33] showed that, under certain
assumptions, estimates on simultaneous approximation involving a mixed
modulus of order (I, I) are valid. In this paper we shall, among others,
prove a certain extension of the main result of Mettke [33, Satz 1] by
giving more complete estimates for simultaneous approximation in
C I

• I (I X 1) and C(I x J), respectively, using mixed moduli of smoothness of
higher orders. For r,SE No := N u {O}:= {l,2,3, ...,}u{O}, these
moduli of order (r,s) are given forfEC(lxJ), and b t ,b 2 ?O by

wr.slt; (i I' ()2)

: = sup {1,A ;" ,A;,,/(x, y) I: (x, y), (x + rh I' Y + sh 2) E I x J,

Ih,l ~b" i= I, 2).
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,LI;,J(x,y):= I ±(_I)'+S (! ,,(r)(s)f(X+Phl'Y+CJho)
1'-0 ,,-0 P (J

is a mixed difference of order (r, s) with increment 171 with respect to x and
increment 17 2 with respect to y. Several properties of this mixed modulus of
smoothness can be found in Schumaker's book [44]. For the sake of
completeness we mention here that the mixed modulus of order (I, I) was
already used in a paper by Munteanu and Schumaker [34], who gave,
among others, inequalities for the approximation by Boolean sums of
variation diminishing spline operators.

2. DEGREE OF SIMULTANEOUS ApPROXIMATION BY BOOLEAN SUMS OF

PARAMETRIC EXTENSIONS

In addition to the notations introduced above, we shall also use the
following: The space C"(I) (of univariate functionsl') will be equipped with
the norm

II f IlcP(/):= max{ II flk)11 f.: O~k ~p};

here II . II x denotes the Cebysev norm on I. Clearly, II . Ii COl/) = II . II f .•

If L is a continuous linear operator mapping (CP(l), II . II cP(/)) into
(CP (I), II . 110(/)), its operator norm will be denoted by II L II rCP(/)(p( /)1'

LEMMA 2.1 [14]. For p,qENo,let the space Cp·q(lxJ) he given

as ahove. Let M: (C'/(J), II· Ilc<fIJI) ~ (Co(J), II· Ilcll(J)) he linear and
continuous. Under these assumptions, the foIIowing two statements hold:

(i) for each fixed y E J and each fE C!"'/(l x J), the function

13 x f--+ M(f" y) E IR

is p-times continuously differentiahle (with respect to x);

(ii) for 0 ~ k ~p, we have

i.e.~

on C"'//(lxJ) for 0 ~ k ~:;p.
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(iii) lj L: (C'(I), II ·11 (PI I)) --> (CuU), !I . II e"l I)) is linear and continuou.l,
then statements akin to (i) and (ii) hold; in particular,

,L DIu. I) = DIu.!) ., L on Cf,.II(I x J) fiir 0 ~ I ~ q.

The main goal of the following theorem is to describe how quantitative
properties of certain univariate operators Land M are inherited by the
Boolean sum of their parametric extensions. It thus supplements results of
a similar nature which were given by Barnhill and Gregory [3 J (see also
Schumaker [43J, Litvin [29J). The theorem's form as presented here
constitutes a slight generalization of the corresponding assertion proved in
[14 J, and is the more suitable one for our present purposes. For the
reader's convenience, we include a proof.

THEOREM 2.2 (cf. [14 J). For p, p', q, q' E N u, let linear operators
L: C'(J) --> Cfi(l) and M: CI(J) --> ("I(J) he given, such that fiJI' fixed
r, SEN U the fiillmring hold:

(i) l(g-Lg)lk)(x)l~r'kl(X)'W,(glf');/l,.I(x))fiir all xEl, all
gE cr'(l), and all 0 ~ k ~p* := min {p, p'}, and

(ii) 1(11- Mh)11) (.1')1 ~ rd.M(y)· wJhl'!l; A'M(Y)) Fir all .I' E J, all
hEC'I(J), andallO~/~q*:=min{q,q'};

here the T's and A's are assumed to he hounded real-valued functions. Then
fi!!' all (x, .1') E 1x J, allfE cr'.II(I x J), andfiJr (0, 0) ~ (k, l) ~ (p*, q*), there
holds:

l(f- (JEB I M)f)lk I) (x, .1')1

~ 1', k I(X)' I'd M(Y)' W,.JPf' If I; A,llx), A dl(Y)'

Proof: Note that

I(f- LL EB I M)f)lkl) (x, .1') I

=IDlk!1 (I-LLEB
I
M))(j;x,v)1

= IDlkU)({DIU!I (1- I.M)}(f)-(D111./1 ,L(1- IMJ}(fJ)(x,yJI·

By our assumption (i) on L, for 0 ~ k ~ p* we have

here c and c* are suitable numerical constants. Hence

II Lgll(!,*(f)~t* ·11 d(!'II)'

so that

L: (('1'(1), II .11(11)) --> (C f'*(1), II . 11(1'*11))
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is continuous. Clearly, this is also true if the topology in the range IS

replaced by the coarser one induced on CP*(I) by II . II e"(/). Hence

L:(('f'(I), 11'11(1'1/))--->(('1'*(1), 11·llelll!l)c(C°(l), 11·llell(l))

is continuous as well. so that Lemma 2.1 implies

for 0 ~ I ~ q.

Thus

1D iklll ( {Dill I) (1- ,Ml}(f) - {Dilll),L (1- ,Ml}(f))(x, .1')1

= I Dik,Ol({D10!1 (1- ,M)}(f)- ,L{(D ill/
) (I-,M))(f)})(x,Y)I.

Now the assumption on the quantitative behavior of the univariate
operator L may be used, since the function in ( ) can be written as a
univariate function of x with parameter y, namely as

U--->({D(1I1) (I-,Ml}(f))'(x)-L({(D1Il,!1 (I-,M))(f)}';x).

Applying D(k,(ll to the function in ( ) is the same as differentiating the latter
univariate function with respect to x. Hence, by assumption (i), the
quantity which we are interested in is bounded from above by

F, k. fix)· W r ((;~)/' i (Dill I) (1- ,M))(f) J.'; Ar./(X)),

The rth modulus of smoothness may be replaced by

O",;k~p*.

x* E I, I (5* I ~. Arl(x).

Next we investigate the latter quantity by using the information available
on ,"vI. The absolute value of the rth order difference is equal to

Because

( 1)1'(;X {(D 10 I) (I - .' M) )( f) }\ (x)

= (Dlol) D I p.lIl, (1- ,M))(f; x, .1')

=(D11I1) (I-,M) D1plIl)(fx,y)



178 HEI1'<Z H. GONSKA

(where the last equality is a consequence of DIP.ol 1M = 1M DIP.OI), it
follows that the r th order difference may be written as

I
I ± (-I)I'(":).(DIO!l U-IM)(DIPOI(:X*+p'()*,Flj
pol,

= I ± (--I)" (':) .s((~~.Y (DIPO'j),* 'I' ,)* (v)
I' 0 I 1 .,

• I' I II-C~J (1 M D1/O'U)),* 1 I' ,j* (V)r

= I,,±o (-I)" C)· {C~.y (D1Po'j),* '1' ,j* (Y)

-C~.y M( (D1I'O}!),* 'I' I'*;I')}I
= ILC~.y-C~.y M lCto (-I)" C)· (DIP.OI!),* lp ,j,;Y) I·

This difference may now be evaluated by using assumption (ii) on M
Hence for 0 ~ I ~ q*, its absolute value is less than or equal to

1',.1. M(Y) . (I), (( (~~.)'I. ±(- 1)1' (':)\ . (D1/'O'j) \* I I' ,j*: ,1"\I(Y))'
\ . ,,-0 I ,

The sth order modulus may be written as

I
,Ll;,* I C~,)'I. t (- t)!' (':). (DII' Olj),* II' ,,*··.·1 (v*)1L. pol.

for some )'* E J and a suitable '7* such that 1'7* I ~ /I, \lLI').
More explicitly, the latter quantity is equal to

I
I' ( r ) (d) '/ 'I. Ll' '\' (- I )!' . - (DIt,.O)j) (1'*)

\ "*~. ) dr . _\*+p()*. -
/' ~ 0 I.

= I,Ll;,. ±(-l)!'(~)'(DIP.q)!),.+" ,\.()'*)I
,,~o I

= I i: (- I )" (;) ±(- 1)1' (':) . (DIP"°j)(X* + p . ()*, y* + m/*) I
(T -0 ,,~O I ,

=1 i: ±(-I)"+"(;)('~)'(DII"'/)j)(x*+p'()*,V*+(J//*)1
(T ~O ,,~O I

~ (l)1'.,U1P.'0; /l1'.dx), /l d [()'))·

Combining the last inequality with the observations made earlier shows the
validity of the theorem. I
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3. ON UNIVARIATE CUBIC SPLINE INTERPOLATION
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There are a number of articles dealing with the rate of convergence of
univariate Type I spline interpolators (When speaking of the convergence
of cubic spline interpolation, one envisions a sequence of meshes L1" such
that the mesh gauges 15 = 15" ~ 0 as n ~ ex). For the sake of brevity we will
write 5,,: = 5,1" in this section only. The following lemma summarizes
various results; it is taken from papers of Hall [24 J, Carlson and Hall [8 J,
and Hall and Meyer [27].

LEMMA 3.1. Let 5 n be given as above, and p = 1, 2, 3, or 4. Then for all
fE CP(I), there holds

11( 5 !"_{)Ik) 1'1 ::(8 ·b P - k "II {IPIII ,
fl. .x r.k . x o::( k ::( min {p, 3 }.

Here II . II" is the sup norm, and the 8p .k are given by the following table
(f3 denotes the mesh ratio of L1,,)

Ep. k k=O k=! k=2

p=! 15/4 14
p=2 9/8 4 10
p=3 71/216 31/27 5
p=4 5/384 1/24 38

(63 + 8fJ2)/9
(Ii + fJ 1)2

Since 5,,fE C2(I) only, for the case k = 3, the above inequality is
intended to express the fact that both the right and left derivatives satisfy
it at the points of discontinuity (see [8 J).

Another type of inequality was already given in 1966 by Sharma and
Meir [45J (see also Muller [35J). Using WI' the first order modulus of
continuity, given for b ;;:: 0 by

wj(f; b) = sup {I f(x') ~f(x")I: Ix' - x" 1::( b},

they proved

THEOREM 3.2. For 5" as above, the following holds for any f E C2 [0, 1J:

A certain supplement of the above result is due to Schmidt [42J, who
showed that forfEC 3 [0, 1],
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This result was further supplemented in a paper of Gfrerer [11]. He
showed that for fE C}[O, 1]. one also has

where M is a constant depending only on two positive real numbers K and
q < ~. (3 + ,,/5) such that for all n E N one has

o~ i,j ~ n - 1.

The aim of the present section is to show that the theorem of Sharma
and Meir can be further extended by using univariate moduli of smoothness
of higher order. For sENo,fEC(l), and 6~0, these functionals are given
by

For various properties of w" see Schumaker's book [44; p. 55ff, and the
references cited therein]. The crucial tool needed to achieve such estimates
is given by the following

LEMMA 3.3 (Gonska [13]). Let J= [0, 1] andfE C'(J), rENo. For any
6 E (0, 1] and sEN, there exists a function gel, +, E C2

, +'(1) with
~

(i)

(ii)

IIflll-g;/;+,II, ~C'W" ,(/111,6)

Ig:/~+,IIf~C·6 i. w l!;6) for

for O~j~r.

O:(j:( r + s.

Here, the ('onstant c depends only on rand s.

The extension of the result of Sharma and Meir is now as follows.

THEOREM 3.4. Let S" be given as above, and let p = 1, 2, 3, or 4. Then for
any fE CI'(l) the j(Jl!owing inequalities hold:

o:( k :( min {p, 3 }.

Here, the constants c( p, k) depend on(v on p and k, and, for k = 3, also on
the mesh ratio p.

Proof Let fE cr'(I) and 0:( k:( min {p, 3}. For any g E (4(1), we have

Using the constants Gp.k from Lemma 3.1, the first summand is bounded
from above by
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Likewise,

Hence,

II (5,J-/)lk) II x

~max{C;l'k;[;4d ·fJl' k.( IIU-g)(P'llx +()4 1'.11 g( 41 11,}.

For p = 4, we can take g =f to obtain the original inequality

181

o~k ~ 3.

If p < 4, it follows from Lemma 3.3(i) [use r = 0 and s = 4 - p there] that
there is a function g,ql + 4 I' E C4 1'(1) such that

If G" denotes a pth primitive of g" 4- (" then G" E C4 (l) and the latter
inequality becomes

Furthermore, Lemma 3.3(ii) guarantees that

II G~\41 Ii, = II G;," t 4 1'111,

= II g;,4 {II II,

~c·fJ (4 I'I' W4 ll(I",fJ).

Hence,

11(5,J-/)(k) II I.

~ max {Gp.k; G4.d . fJP - k . { II U- G,,jIPI Ilx + fJ4 p. II G:j
4111 I }

~c.maX{£l'k;1:4.k}.fJp k

'{W4 pU 11'1,fJ)+fJ4 1'·6 14 pl'W4 (,cllp),fJ)}

= 2c . max {';p.k; £4.k} . bP k. W4 p(PPI, b),

and thus the inequality is also proved for 1~p ~ 3. I
Remark 3.5. (i) Because
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the inequality of Theorem 3.4 expresses the fact that each cubic polynomial

is reproduced by S".
(ii) For the case p = 2, Theorem 3.4 gives

which is an improvement of the result of Sharma and Meir [45].

(iii) For p = 3, we have

o~ k ~ 3.

This inequality is a combination of the results of Schmidt and Gfrerer
mentioned earlier (see [42, 11]).

(iv) The choice p = 4 gives

In particular, we have for 0 ~ k ~ 2 that

il(S,J-fllkl, = 0(154 k), 15 -> 0,

independent of the mesh radio [1. (In the latter cases the constants c(4, k) =

2c· f,4k' 0 ~ k ~ 2, do not depend on [3.)

4. SIMULTANEOUS ApPROXIMATION BY GORDON OPERATORS

4.1. Blended Type I Spline Interpolators

THEOREM 4.1. Let p = 1,2, 3, or 4 and Sf,,: CI'(l) 3fl---> ,IjE C 2
(/) he the

"clamped spline" operator from Theorem 3.4, i.e.,

II(g- S ,,,g) lkl ll, ~c(p,k)·bl' k'(!)4 1'(/1/'1,15),

o~ k ~p* : = min {p, 2} ~ min: p, 3}.

Let q = 1, 2, 3, or 4, and analogouslv S 1",: e l (1) -> C 2(J) he given with

II( h-S. h){i) II' <c(q 1)·b'l I· W (/'1'11 b)
1m-Y~ -.......::: . ' . 4 (I· , ,

o~ I ~ q* : = min {q, 2 }~ min {q, 3 },

where b is the mesh gauge ol LJ III ·

Then we have/or (0, 0) ~ (k, I) ~ (p*, q*) and alllE ('1"1(/ x 1)

II (/- LS.,,, EB \,ScJ,,)fllk,llli J

~c(p,k).c(q,l).()!' k· 6'1

The proof is a consequence of Theorem 2.2.
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COROLLARY 4.2. (i) For p=q= 1, we obtain with O~k, l~ 1

IIU- CSA" EB ,.SAJf)(k.1111 'l

~ c(l, k)· c(l, l). 6 1
-k . ;)1-1. W3.3U(I.ll; 6, ;)).

(ii) For p=q=4, we get/or O~k, 1~2

IIU- LS,J
n

EB j,SAJf)Ik.!1 II I

~c(4,k).c(4,l).()4 k.;)4 1.llp4. 41 1If

= O(64 k. 34 - I), (), ;)~ 0,

(see Carlson-Hall [8, Theorem 2J).

4.2. Blended Natural Spline Interpolators
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LEMMA 4.3 (Hall [25, Corollary 2J). If the natural cubic spline operator
with respect to the partition .d n: Xo < ... < XII is denoted by T.1n , then/cn' all
g E C2 [xo, xlIJ and k = 0, 1 there holds

II(T,jng- g)lklll I ~ c· 62
k ·11 g"ll f.

(=C·()2 k' Wo(g",6)).

Here, () is the mesh gauge of .d,p and c is a constant independent of.d/l"

In the following theorem we give an inequality on the degree of
simultaneous approximation by Gordon operators based upon the use of
T eln . Here, TAn is considered as an operator mapping C 2(I) into CI(I). cl(I)
was chosen as the image space in order to indicate that uniform
simultaneous approximation by blended natural spline interpolators can be
expected only for mixed partials of order (k, l) ~ (1, 1).

THEOREM 4.4. Let T.!": C 2 (1) ~ CI(I) be the natural cubic spline
operator from Lemma 4.3. Analogously, let T,j,.,: C 2(J) ~ C' (J) be given,
with

II (T.1,.,h - h)(/) II, ~ C·;)2 I'll h"ll, Fir 1=0,1,

where;) is the mesh gauge of .dill' Then for (0, 0) ~ (k, l) ~ (1, 1) and all
fE C2.2(I x J), we have

The proof follows from Theorem 2.2.
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5. NUMERICAL ApPROXIMATION

This section is concerned with the question of the numerical implementa­
tion of the blending schemes discussed so far, and with the degree of
approximation by discrete hlended interpolant.I' (approximants). The general
idea to construct such discrete schemes was already described by Gordon
[19, p. 254 J: "First into univariate functions and then into scalar
parameters." It was further discussed by Cavendish, Gordon, and Hall
[23, 9J and Lancaster [28]. Formally, the approach is as follows:

let L, u"Ed' be such that l,~u" and, for l,~j~u" let II: C'(J)-d;1; be
given linear functionals so that for all IE U"'(/ x J) the function [I"1 X f---+

I,U,lJ is in C"(!). If the operator M: C'(J) --> C'(J) (see Theorem 2.2) has
the form

II"

then its parametric extension 1M: C""'(/xJ)-->C""(lxJ) is defined by

,M(}; x, v) = MU" v) = I IjU,), hi(y),
/ II

where I, denotes the partial functions of f Hence, in general, l M has
infinite dimensional range.

Using this notation, the parametric extension ,S,lm of the clamped cubic
spline interpolation operator 5 1m discussed above is obtained by choosing
I, = - I, u, = m + I, and

i= ~I

O~j~m

i=m+1.

Hence, in order to represent ,MU) numerically, it is necessary to find
an approximation of the x-dependence of this function. This can be
achieved by applying an operator ,E: C""'(/xJ) --> C""'(/xJ) of the form

/(\

,EU; x, y) = I f,U')· ,ge,(x),
i II

to,MU), where T" ll,Ed', T,~ll" and where the functionals ;.,: C"(/) --> (j;£

now act on the variable x Eland are such that for all IE C""'(I x J) the
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function [J3 Y H X;(fl)] is in C(J). The resulting function L[ 0, M)f is
then given by

and is an element of ('I" '/( I x J).
In the case where both Land M are cubic spline operators, ,[ ,M is

their tensor product, a bicubic spline operator. See Mettke [33] for a more
detailed explanation and for further examples.

Recalling that in Section 2 we were considering approximants of the
form,L tB ,.M, it is appropriate to make a note on the rellationship
between ,L and,L. Usually the univariate operator [ is obtained by
"refining" L in a certain fashion so that ,L provides much better
approximations to bivariate functions than,L does. The corresponding
discretizations ,M ,L are obtained in an analogous way.

The operator P being used for numerical approximation is then given by

P:= ,M",L+.,[ ,M-.,L ,M,

and is sometimes called the discrele (L, M, L, M) hlending inlerpolalion
(approximation) operalor. For the general technique of "nth oreler blend­
ing" (in connection with the so-called complete interpolation scheme for
polynomial splines) see, e.g., Baszenski [4]; the above operator P is related
to second order blending.

A fundamental lemma upon which the considerations of this section will
be based was given by Gordon [19, Lemma AI] (see also Hall [26,
Theorem 2, p. 330ff].

LEMMA 5.1. Lei (,,,1, +, 0) he a (not necessarily commulative) ring with
unity I, .c1 = {I, A, B, C, C, ... ,}. It one defines the Boolean sum of A, BE.W
hy A tB B : = A + B - A B, and it A D = D., A, then

l-(D A+C B-A B)

= (1- C) + (I - D) + (1- A tB B) - (I - CtB B) - (I - A ED D).

Proof Writing out the right hand side explicitly and observing that
A D = D A yields the claim of the lemma. I

THEOREM 5.2. Lei univariale operalOrs Land M he given as in Theorem
2.2. Furthermore, let L: ('1'(1) -4 C"(I) he given such Ihat

where r,k, r:(') ~ rr,U(x), ,1 ,1(x) ~ A, ,(x )le)r all x E I, all g E C"( l), and
all 0 ~ k ~p* = min{p, prj.
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Also, let ;\1: ("I(l) ---> ("'(1) he such that

where J',.!H(y)~fd.M(Y)' /1'\fLv)~A"\I(y)fiJr yEJ, all hEC'I(J), and
all 0 ~ I~ q* = min {q, q'}.

The ro,\, and A's arc assumed to he hounded real-valued functions. Then fiJr
all (x, y) E I x J and all fE C"I(I x J), we have for (0, 0) ~ (k, !) ~ (p*, q*):

IDlk.l) (I-JVt,L-J ,M+J ,M)(fx,y)1

~ r'k./(X). w,o(fl/'.!I; A, dx), 0)

+ rd..liLv) . wo.,(f lk. 'iI; 0, A,~ILv))

+ 3 . J',.uJx) . f,.I. M(y) . (I),J!II"iI: A r . /(x), A,. MLv)).

Proof: We decompose the difference / ( ,M ,L + ,L ,M - ,L ,M)
as suggested by Lemma 5.1 and apply D IU1

, This yields the five term
expression

DIU) (f-,L)+D IU ) (f-vM)+DIU1 (f-,LCB,.M)

_Dlu, (f-,LCB,M)-D IU' (f-,LCB,i\1).

The first term can be further decomposed as

likll (f-,L)=Dlk.o, DIO.!I (I-,L)

= D IU11 (f- ,f) Dill/)

Here we have used the fact that for 0 ~ I ~ q the operators D((UJ and ,L
commute on C"I(! x J) (see Lemma 2.1), The assumption on L implies

I(Dlkl) (f-,L))(fx,y)!

~ J'ruJxJ ·()),o(fII,.I): Ardx), 0),

In a similar way, it follows for 0 ~ k ~ P that

I(DIU' (l-vM))(C"y)1

~ rd. ,wLv)· wo,(flk.'iI: 0, A,wLv)),

O~k~p*.

O~/~q*.

The remaining three terms have upper bounds as suggested by
Theorem 2.2. We obtain for (0, 0) ~ (k,!) ~ (p*, q*) the inequalities

I(D lkJ1 (f',L(£) ,M))(f; x,v)1

~ J'rU(x), r,.! M(V)' (J),J!II,.'II: A,I(X), AdILv)),
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I(Dlkl), (I -,Ltf) ,M))(t; x, Y)I

~ Frk.T(x), F,./ M(Y)' wr,Jllp.,n; Ar.dx), A,. M(Y))

~ Fr.k./Jx) . Fd. M(Y) .w r.Jllp.'t1; A r.d x ), A,. M(Y)),

!(Dlk.1) (l-,Ltf) ,M))(j; x, Y)I

~ Frk./Jx), F,./.Mer)· wr.,Ulp,'!I; Ar,L(x), A,.M(Y))

~ Fr.k.L(x), Fd,M(Y)' wr"Ulp 't1; A"L(X), A,MeV)).

Combining the five inequalities yields the claim of Theorem 5.2. I
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Remark 5.3. (i) Theorem 5.2 is not given in its most general form. It is,
for instance, possible to assume that L satisfies certain inequalities in terms
of w, instead of W,. Furthermore, assumption such as rr,k.T(X)~; rr.k,L(X),
etc., were mainly made in order to obtain simple upper bounds of the
differences in question. We note, however, that our simplifying assumptions
do not have a negative impact on the order of convergence in the applica­
tion below.

(ii) Another way to assume compatibility between Land L, and
between M and M, respectively, is to require, for instance, absorption
properties such as L L = Land M M = M to hold. This approach is quite
typical for the case of spline projectors and was discussed to some extent
in [9,28].

In the following example, we apply Theorem 5.2 to discrete Type I
(clamped) spline blended interpolation.

EXAMPLE 5.4. For the sake of simplicity, in the sequel, c will always
denote a suitable numerical constant which may be different at different
occurrences, even on the same line.

Let S.1,,: CP(I) --+ Cl(I) be given as in Theorem 3.4, i.e., p = 1, 2, 3, or 4,
and

o~ k ~ min {p, 3 }.

In addition, let b ~ 1.
Let S.1

m
: C'!(J) --+ C2(J) be a second spline operator of the same type

(and thus satisfying an analogous inequality involving the mesh gauge
;)~ I).

Choose further an operator
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with respect to the mesh A'i and mesh gauge (j2, as well as another operator

with mesh At" and gauge iF. Using the notation

from Theorem 5.2, we arrive at

II D'U) (! - P,j,df II f

:s; c· (j2)1' k. W 4 I"o(f'ltl l; ()2, 0) + C. (32 )" I. (J)O.4 ,,(f'k'/I; 0, J2)
'l/' III ..~

1'4 "U ' ; 0, ()),

for (0, O):S; (k, I):S; (min(p, 2:, min(q, 2}).

(i) For p = q = I (hence p* = q* = I) and b = 3, the upper bound
from above becomes

C.(fll kl'(!)]OU II ,Ii;(j2,0)

+ C. (j21 I II. W
0

1(f'k,1 I; 0, b2 )

+C·()2 k "(!)UUII.II;(j,()), (O,O):S; (k, !):s; (I, I).

ForfECII(!xj), the latter quantity is bounded from above by

c· P 2k. Ii I" I./i + c· (F 21. II f'k I11I + C. ()2 k 1 tl. l )

This implies 0(6 2
), () -> 0, convergence of p,i.,Ll to f However, it does not

imply uniform convergence of either of the derivatives (P,j"jf)'k,1i to flk./i
for k = I or 1= I. Non-quantitative assertions of this type are obtained by
referring back to the previous three term expression for the case p = q = I:
all three moduli present there tend to zero as (j -> 0.

Furthermore, for fE C4.4(! x J), the upper bound is

C. ()21 I kl. b(, .11 1"411 il f + C· (j211 ". ()6 .11 f'k,4 1II,

+C.()2 k '.()6.llf'44I'I,

(j -> n, (O,O):S; (k, I):S; (1,1).

An inspection of the possible cases for k, / shows that any of the three
O( ... ) tcrms may bc asymptotically dominant.
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(ii) For p = q = 4 (hence p* = q* = 2) and J = I), we obtain

II D(kl
l (1- Pc\,(,)f II f

~ C' (1)2)4 k'!1 P4, li ll
l

+ C' (1)")4 I, II f(k,4) ii,

+C'I)H k 1,lip44lil,
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=O(bH 2max:U:) for b ~ 0 and (0, 0) ~ (k,l) ~ (2,2).

This is, of course, the same order of approximation as obtained under (i).
However, now statements for the degree of simultaneous approximation
with respect to D(2,1i, 0 ~ I ~ 2, and D(k,2), 0 ~ k ~ 2, are also available, In
all five cases just mentioned we derive

I) ~O.

Note that, as far as order is concerned, our estimates are similar to the
L 2 norm inequalities derived in [9, Th. 3] for functions in the Sobolev
space Wi4

,4VX J). It should be noted that they were able to prove a corre­
sponding statement for (0, 0) ~ (k, !) ~ (3, 3). However, our estimate from
above is only one particular instance of the much more general approach
described in Theorem 5.2 and of its particular consequence given just
before this example. I

Remark 5.5. Inequalities analogous to those of Examplle 5.4 are
available for the discrete version of the blended natural spline interpolation
operator discussed in Section 4.2.
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